Existence of global solutions with slow decay and unbounded free boundary for a superlinear Stefan problem

نویسندگان

  • MAREK FILA
  • P. SOUPLET
چکیده

We consider a one-phase Stefan problem for the heat equation with a superlinear reaction term. It is known from a previous work (Ghidouche, Souplet, & Tarzia [5]) that all global solutions are bounded and decay uniformly to 0. Moreover, it was shown in Ghidouche, Souplet, & Tarzia [5] that either: (i) the free boundary converges to a finite limit and the solution decays at an exponential rate, or (ii) the free boundary grows up to infinity and the decay rate is at most polynomial, and it was also proved that small data solutions behave like (i). Here we prove that there exist global solutions with slow decay and unbounded free boundary, i.e. of type (ii). Also, we establish uniform a priori estimates for all global solutions. Moreover, we provide a correction to an error in the proof of decay from Ghidouche, Souplet, & Tarzia [5].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE STEFAN PROBLEM WITH KINETIC FUNCTIONS AT THE FREE BOUNDARY

This paper considers a class of one-dimensional solidification problem in which kinetic undercooling is incorporated into the temperature condition at the interface. A model problem with nonlinear kinetic law is considered. The main result is an existence theorem. The mathematical effects of the kinetic term are discussed

متن کامل

Nonlinear Two-Phase Stefan Problem

In this paper we consider a nonlinear two-phase Stefan problem in one-dimensional space. The problem is mapped into a nonlinear Volterra integral equation for the free boundary.

متن کامل

Decay estimates of solutions to the IBq equation

‎In this paper we focus on the Cauchy problem for the generalized‎ ‎IBq equation with damped term in $n$-dimensional space‎. ‎We establish the global existence and decay estimates of solution with $L^q(1leq qleq 2)$ initial value‎, ‎provided that the initial value is suitably small‎. ‎Moreover‎, ‎we also show that the solution is asymptotic to the solution $u_L$ to the corresponding linear equa...

متن کامل

Existence and multiplicity of solutions to a p-Laplacian equation with nonlinear boundary condition

We study the nonlinear elliptic boundary value problem Au = f(x, u) in Ω , Bu = g(x, u) on ∂Ω , where A is an operator of p−Laplacian type, Ω is an unbounded domain in R with non-compact boundary, and f and g are subcritical nonlinearities. We show existence of a nontrivial nonnegative weak solution when both f and g are superlinear. Also we show existence of at least two nonnegative solutions ...

متن کامل

UNIQUENESS OF SOLUTION FOR A CLASS OF STEFAN PROBLEMS

This paper deals with a theoretical mathematical analysis of one-dimensional solidification problem, in which kinetic undercooling is incorporated into the This temperature condition at the interface. A model problem with nonlinear kinetic law is considered. We prove a local result intimate for the uniqueness of solution of the corresponding free boundary problem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001